Презентация на тему применение реактивного движения. Презентация на тему "реактивное движение"

Слайд 2

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Слайд 3

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами.

Слайд 4

Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Слайд 5

Кальмар

Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет)

Слайд 6

Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.

Слайд 7

Летающий кальмар

Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Слайд 8

Осьминог

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.

Реактивное движение

  • Работу выполнил
  • ученик 10 Б класса
  • МОУ «Средняя школа №22» Михно Владимир
  • Руководитель:
  • Баласанова Ольга Валентиновна
Реактивное движение
  • Содержание:
  • Что такое реактивное движение?
  • Реактивное движение в нашей жизни.
  • Подробности реактивного движения.
Реактивное движение
  • Реактивное движение – это движение, которое возникает как результат отделения от тела какой либо части, либо как результат присоединения к телу другой части.
Наблюдать реактивное движение очень просто. Если надуть шарик и не завязывая отпустить его. Шарик будет двигаться до тех пор пока продолжается истечение воздуха.
  • Наблюдать реактивное движение очень просто. Если надуть шарик и не завязывая отпустить его. Шарик будет двигаться до тех пор пока продолжается истечение воздуха.
  • Реактивная сила возникает без какого либо взаимодействия с внешними телами
Реактивная сила возникает без какого-либо взаимодействия с внешними телами.
  • Например, если запастись достаточным количеством мячей, то лодку можно разогнать и без помощи весел, действием только одних внутренних сил. Толкая мяч, человек (а значит и лодка) сам получает толчок согласно закону сохранения
По принципу реактивного движения передвигаются некоторые представители животного мира, например, кальмары и осьминоги. Периодически выбрасывая, вбираемую в себя воду они способны развивать скорость 60 - 70 км/ч.
  • По принципу реактивного движения передвигаются некоторые представители животного мира, например, кальмары и осьминоги. Периодически выбрасывая, вбираемую в себя воду они способны развивать скорость 60 - 70 км/ч.
Ракеты и спутники
  • В космическом пространстве нет среды, с которым тело могло взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут использованы только реактивные летательные объекты.
Ракета.
  • Ракеты - аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.
К.Э.Циолковский
  • Он разработал теорию движения ракет.
  • Вывел формулу для расчёта их скорости.
В начале XX века люди мечтали о возможности космических полётов, теперь уже работают многоцелевые орбитальные станции. Невозможное сегодня станет возможным завтра. Циолковский мечтал о времени, когда люди запросто смогут “поехать” в гости на любую планету, смогут путешествовать во всей Вселенной.
  • В начале XX века люди мечтали о возможности космических полётов, теперь уже работают многоцелевые орбитальные станции. Невозможное сегодня станет возможным завтра. Циолковский мечтал о времени, когда люди запросто смогут “поехать” в гости на любую планету, смогут путешествовать во всей Вселенной.
  • Орбитальная станция
  • «МИР»
  • Международная Космическая
  • Станция
Реактивное движение в природе.
  • Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.
Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.
  • Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Введение В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба. И на данный период времени космические полеты стали возможны в связи с реактивным движением. Которое мы смогли применить благодаря животным использующим этот тип движения. Если мы сможем еще больше изучить реактивное движение возможно будет усовершенствовать двигатели космических кораблей.


Задачи: Что такое реактивное движение? Какие представители животного мира используют реактивное движение? Как устроен реактивный двигатель кальмара? Какие растения используют реактивное движение для разбрасывания семян? Одинаковый ли принцип работы у реактивного двигателя и реактивное движение которое используют некоторые виды животных и растений?






Существует несколько определений реактивного движения. Вот три основных: Под реактивным понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела. При этом возникает реактивная сила, сообщающая телу ускорение. Реактивное движение-это движение тела возникающее вследствие отделения некоторой его части с определенной скоростью относительно тела. Реактивное движение названо так потому что данный вид движения имеет первопричиной реакцию тела на толчок. Реактивное движение - движение тела, обусловленное отделением от него с некоторой скоростью какой-то его части. Реактивное движение описывается, исходя из закона сохранения импульса


Глава 1. Применение реактивного движения среди животных Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок. Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.


Каракатица Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.


Сальпа Тело цилиндрическое, длина от нескольких миллиметров до 33 см, покрыто прозрачной туникой, сквозь которую просвечивают ленты кольцевых мышц и кишечник. На противоположных концах тела расположены отверстия сифонов ротового, ведущего в обширную глотку, и клоакального. Сердце на брюшной стороне. Кровеносная система незамкнутая. Нервная система надглоточный ганглий с отходящими от него нервами. Над ним светочувствительный орган. Сальпа при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.


Кальмар Наибольший интерес представляет реактивный двигатель кальмара. Кальмары достигли высшего совершенства в реактивной навигации. При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед.


Флайинг-сквид Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше. Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.


Осьминог Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами. Мешковатые осьминоги плавают, конечно, хуже кальмаров. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед на два – два с половиной метра.


Личинка насекомого Существует способ перемещения в пространстве, когда отбрасываемая назад масса первоначально находится внутри движущегося тела. Прежде чем использовать этот принцип движения для надобностей техники, человек мог наблюдать его проявление в окружающей природе. Известно, например, что таким именно способом личинки стрекоз. Причём не все, а лишь длиннобрюхие, активно плавающие личинки стоячих и текучих вод, а также короткобрюхие ползающие личинки стоячих вод. Реактивное движение личинка использует главным образом в минуту опасности для того, чтобы быстро переместиться на другое место. Такой способ передвижения не предусматривает точного маневрирования и не пригоден для погони за добычей. Но личинки коромысел и не гоняются ни за кем - они предпочитают охоту из засады. Для этого у них имеется специальная очень сильная и быстрая хваталка, представляющая собой видоизмененную нижнюю губу, вооруженную двумя большими хватательными крючьями - такой нет ни у каких других насекомых. Задняя кишка личинки стрекозы, помимо своей основной функции, выполняет еще и роль органа движения. Вода заполняет заднюю кишку, затем с силой выбрасывается, и личинка перемещается по принципу реактивного движения на 6-8 см. Для дыхания нимфам также служит задняя кишка, которая как насос постоянно закачивает через анальное отверстие богатую кислородом воду.


Глава 2 Реактивное в мире растений Реактивное движение можно встретить и в мире растений. Например, созревшие плоды бешеного огурца при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м. Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. Тот же самый принцип использует бешенный огурец


Глава 3 Реактивное движение в технике Инженеры уже создали двигатель, подобный двигателю кальмара. Его называют водометом. В нем вода засасывается в камеру. А затем выбрасывается из нее через сопло; судно движется в сторону, противоположную направлению выброса струи. Вода засасывается при помощи обычного бензинового или дизельного двигателя.


Реактивный двигатель Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.Идея К.Э.Циолковского была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.



Cлайд 1

Cлайд 2

Вывод формулы скорости ракеты при взлете Согласно третьему закону Ньютона: F1 = - F2, где F1 – сила, с которой ракета действует на раскаленные газы, а F2 – сила, с которой газы отталкивают от себя ракету. Модули этих сил равны: F1 = F2. Именно сила F2 является реактивной силой. Рассчитаем скорость, которую может приобрести ракета. Если импульс выброшенных газов равен Vг mг, а импульс ракеты Vр mр, то по закону сохранения импульса, получаем: Vг mг = Vр mр, Откуда скорость ракеты: Vр = Vг mг /mр

Cлайд 3

Константин Эдуардович Циолковский Идея использования ракет для космических полетов была выдвинута в начале 20 – го века русским ученым, изобретателем и учителем Константином Эдуардовичем Циалковским. Циалковский разработал теорию движения ракет, вывел формулу для расчета их скорости, был первым, кто предложил использовать многоступенчатые ракеты.

Cлайд 4

Первый космонавт планеты и главный конструктор отечественной ракетно-космической техники Сергей Павлович Королёв – советский ученый и конструктор, руководитель всех космических полетов. Юрий Алексеевич Гагарин – первый космонавт, совершил облет Земли 12 апреля 1961 г. за 1 час 48 минут на корабле «Восток».

Cлайд 5

Реактивное движение Реактивное движение происходит за счёт того, что от тела отделяется и движется какая-то его часть, в результате чего само тело приобретает противоположно направленный импульс.

Cлайд 6

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтики. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут быть использованы только реактивные летательные аппараты, т.е. ракеты.

Cлайд 7

Наглядная схема устройства одноступенчатой ракеты. В любой ракете независимо от ее конструкции всегда имеется оболочка и топливо с окислителем. На рисунке изображена ракета в разрезе. Мы видим, что оболочка ракеты включает в себя полезный груз (космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Cлайд 8

Многоступенчатые ракеты В практике космических полетов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначеные для более дальних полетов. На рисунке показана схема такой ракеты. После того как топливо и окислитель первой ступени будут израсходованы, эта ступень автоматически отбрасывается и в действие вступает двигатель второй ступени и т.д. Уменьшение общей массы ракеты путем отбрасывания уже ненужной ступени позволяет сэкономить топливо и окислитель и увеличить скорость ракеты.

Применение реактивного движения в природе Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техно изобретений.




Каракатица Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.




Кальмар Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.


Летающий кальмар Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.


Осьминог Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.


Бешеный огурец В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием "бешеный огурец". Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода со скоростью до 10 м/с вылетает жидкость с семенами. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.